Properties¶
Build properties are a generalized way to provide configuration information to build steps; see Build Properties for the conceptual overview of properties.
Some build properties come from external sources and are set before the build begins; others are set during the build, and available for later steps. The sources for properties are:
global configuration
- These properties apply to all builds.
- schedulers
- A scheduler can specify properties that become available to all builds it starts.
- changes
- A change can have properties attached to it, supplying extra information gathered by the change source.
This is most commonly used with the
sendchange
command. forced builds
- The "Force Build" form allows users to specify properties
buildslaves
- A buildslave can pass properties on to the builds it performs.
- builds
- A build automatically sets a number of properties on itself.
builders
- A builder can set properties on all the builds it runs.
- steps
- The steps of a build can set properties that are available to subsequent steps. In particular, source steps set the got_revision property.
If the same property is supplied in multiple places, the final appearance takes precedence. For example, a property set in a builder configuration will override one supplied by a scheduler.
Properties are stored internally in JSON format, so they are limited to basic types of data: numbers, strings, lists, and dictionaries.
Common Build Properties¶
The following build properties are set when the build is started, and are available to all steps.
got_revision
This property is set when a
Source
step checks out the source tree, and provides the revision that was actually obtained from the VC system. In general this should be the same asrevision
, except for non-absolute sourcestamps, wheregot_revision
indicates what revision was current when the checkout was performed. This can be used to rebuild the same source code later.Note
For some VC systems (Darcs in particular), the revision is a large string containing newlines, and is not suitable for interpolation into a filename.
For multi-codebase builds (where codebase is not the default ''), this property is a dictionary, keyed by codebase.
buildername
- This is a string that indicates which
Builder
the build was a part of. The combination of buildername and buildnumber uniquely identify a build.
buildnumber
- Each build gets a number, scoped to the
Builder
(so the first build performed on any givenBuilder
will have a build number of 0). This integer property contains the build's number.
slavename
- This is a string which identifies which buildslave the build is running on.
scheduler
- If the build was started from a scheduler, then this property will contain the name of that scheduler.
workdir
- The absolute path of the base working directory on the slave, of the current builder.
For single codebase builds, where the codebase is '', the following Source Stamp Attributes are also available as properties: branch
, revision
, repository
, and project
.
Source Stamp Attributes¶
branch
revision
repository
project
codebase
For details of these attributes see Concepts.
changes
This attribute is a list of dictionaries reperesnting the changes that make up this sourcestamp.
Using Properties in Steps¶
For the most part, properties are used to alter the behavior of build steps during a build.
This is done by annotating the step definition in master.cfg
with placeholders.
When the step is executed, these placeholders will be replaced using the current values of the build properties.
Note
Properties are defined while a build is in progress; their values are not available when the configuration file is parsed. This can sometimes confuse newcomers to Buildbot! In particular, the following is a common error:
if Property('release_train') == 'alpha':
f.addStep(...)
This does not work because the value of the property is not available when the if
statement is executed.
However, Python will not detect this as an error - you will just never see the step added to the factory.
You can use build properties in most step parameters. Please file bugs for any parameters which do not accept properties.
Property¶
The simplest form of annotation is to wrap the property name with Property
:
from buildbot.plugins import steps, util
f.addStep(steps.ShellCommand(command=['echo', 'buildername:', util.Property('buildername')]))
You can specify a default value by passing a default
keyword argument:
f.addStep(steps.ShellCommand(command=['echo', 'warnings:', util.Property('warnings', default='none')]))
The default value is used when the property doesn't exist, or when the value is something Python regards as False
.
The defaultWhenFalse
argument can be set to False
to force Buildbot to use the default argument only if the parameter is not set:
f.addStep(steps.ShellCommand(command=['echo', 'warnings:',
util.Property('warnings', default='none', defaultWhenFalse=False)]))
The default value can reference other properties, e.g.:
command=util.Property('command', default=util.Property('default-command'))
Interpolate¶
Property
can only be used to replace an entire argument: in the example above, it replaces an argument to echo
.
Often, properties need to be interpolated into strings, instead.
The tool for that job is Interpolate.
The more common pattern is to use Python dictionary-style string interpolation by using the %(prop:<propname>)s
syntax.
In this form, the property name goes in the parentheses, as above.
A common mistake is to omit the trailing "s", leading to a rather obscure error from Python ("ValueError: unsupported format character").
from buildbot.plugins import steps, util
f.addStep(steps.ShellCommand(command=['make',
util.Interpolate('REVISION=%(prop:got_revision)s'),
'dist']))
This example will result in a make
command with an argument like REVISION=12098
.
The syntax of dictionary-style interpolation is a selector, followed by a colon, followed by a selector specific key, optionally followed by a colon and a string indicating how to interpret the value produced by the key.
The following selectors are supported.
prop
- The key is the name of a property.
src
- The key is a codebase and source stamp attribute, separated by a colon.
kw
- The key refers to a keyword argument passed to
Interpolate
. slave
- The key to the per-buildslave "info" dictionary (e.g., the "Slave information" properties shown in the buildslave web page for each buildslave)
The following ways of interpreting the value are available.
-replacement
- If the key exists, substitute its value; otherwise, substitute
replacement
.replacement
may be empty (%(prop:propname:-)s
). This is the default. ~replacement
- Like
-replacement
, but only substitutes the value of the key if it is something Python regards asTrue
. Python considersNone
, 0, empty lists, and the empty string to be false, so such values will be replaced byreplacement
. +replacement
- If the key exists, substitute
replacement
; otherwise, substitute an empty string.
?|sub_if_exists|sub_if_missing
#?|sub_if_true|sub_if_false
- Ternary substitution, depending on either the key being present (with
?
, similar to+
) or beingTrue
(with#?
, like~
). Notice that there is a pipe immediately following the question mark and between the two substitution alternatives. The character that follows the question mark is used as the delimiter between the two alternatives. In the above examples, it is a pipe, but any character other than(
can be used.
Although these are similar to shell substitutions, no other substitutions are currently supported.
Example:
from buildbot.plugins import steps, util
f.addStep(steps.ShellCommand(command=['make',
util.Interpolate('REVISION=%(prop:got_revision:-%(src::revision:-unknown)s)s'),
'dist']))
In addition, Interpolate
supports using positional string interpolation.
Here, %s
is used as a placeholder, and the substitutions (which may themselves be placeholders), are given as subsequent arguments:
TODO
Note
Like Python, you can use either positional interpolation or dictionary-style interpolation, not both.
Thus you cannot use a string like Interpolate("foo-%(src::revision)s-%s", "branch")
.
Renderer¶
While Interpolate can handle many simple cases, and even some common conditionals, more complex cases are best handled with Python code.
The renderer
decorator creates a renderable object that will be replaced with the result of the function, called when the step it's passed to begins.
The function receives an IProperties
object, which it can use to examine the values of any and all properties.
For example:
from buildbot.plugins import steps, util
@util.renderer
def makeCommand(props):
command = ['make']
cpus = props.getProperty('CPUs')
if cpus:
command += ['-j', str(cpus + 1)]
else:
command += ['-j', '2']
command += ['all']
return command
f.addStep(steps.ShellCommand(command=makeCommand))
You can think of renderer
as saying "call this function when the step starts".
FlattenList¶
If nested list should be flatten for some renderables, FlattenList could be used. For example:
from buildbot.plugins import steps, util
f.addStep(steps.ShellCommand(command=['make'], descriptionDone=util.FlattenList(['make ', ['done']])))
descriptionDone
would be set to ['make', 'done']
when the ShellCommand
executes.
This is useful when a list-returning property is used in renderables.
Note
ShellCommand automatically flattens nested lists in its command
argument, so there is no need to use FlattenList
for it.
WithProperties¶
Warning
This placeholder is deprecated. It is an older version of Interpolate. It exists for compatibility with older configs.
The simplest use of this class is with positional string interpolation.
Here, %s
is used as a placeholder, and property names are given as subsequent arguments:
from buildbot.plugins import steps, util
f.addStep(steps.ShellCommand(
command=["tar", "czf",
util.WithProperties("build-%s-%s.tar.gz", "branch", "revision"),
"source"]))
If this BuildStep
were used in a tree obtained from Git, it would create a tarball with a name like build-master-a7d3a333db708e786edb34b6af646edd8d4d3ad9.tar.gz
.
The more common pattern is to use Python dictionary-style string interpolation by using the %(propname)s
syntax.
In this form, the property name goes in the parentheses, as above.
A common mistake is to omit the trailing s
, leading to a rather obscure error from Python (ValueError: unsupported format character
).
from buildbot.plugins import steps, util
f.addStep(steps.ShellCommand(command=['make', util.WithProperties('REVISION=%(got_revision)s'),
'dist']))
This example will result in a make
command with an argument like REVISION=12098
.
The dictionary-style interpolation supports a number of more advanced syntaxes in the parentheses.
propname:-replacement
- If
propname
exists, substitute its value; otherwise, substitutereplacement
.replacement
may be empty (%(propname:-)s
) propname:~replacement
- Like
propname:-replacement
, but only substitutes the value of propertypropname
if it is something Python regards asTrue
. Python considersNone
, 0, empty lists, and the empty string to be false, so such values will be replaced byreplacement
. propname:+replacement
- If
propname
exists, substitutereplacement
; otherwise, substitute an empty string.
Although these are similar to shell substitutions, no other substitutions are currently supported, and replacement
in the above cannot contain more substitutions.
Note: like Python, you can use either positional interpolation or dictionary-style interpolation, not both.
Thus you cannot use a string like WithProperties("foo-%(revision)s-%s", "branch")
.
Custom Renderables¶
If the options described above are not sufficient, more complex substitutions can be achieved by writing custom renderables.
Renderables are objects providing the IRenderable
interface.
That interface is simple - objects must provide a getRenderingFor method.
The method should take one argument - an IProperties
provider - and should return a string or a deferred firing with a string.
Pass instances of the class anywhere other renderables are accepted.
For example:
from buildbot.interfaces import IRenderable
from buildbot.plugins import steps
class DetermineFoo(object):
implements(IRenderable)
def getRenderingFor(self, props):
if props.hasProperty('bar'):
return props['bar']
elif props.hasProperty('baz'):
return props['baz']
return 'qux'
steps.ShellCommand(command=['echo', DetermineFoo()])
or, more practically,:
class Now(object):
implements(IRenderable)
def getRenderingFor(self, props):
return time.clock()
ShellCommand(command=['make', Interpolate('TIME=%(kw:now)s', now=Now())])
This is equivalent to:
@renderer
def now(props):
return time.clock()
ShellCommand(command=['make', Interpolate('TIME=%(kw:now)s', now=now)])
Note that a custom renderable must be instantiated (and its constructor can take whatever arguments you'd like), whereas a function decorated with renderer
can be used directly.